

- Q1. How much copper will be deposited on the cathode of an electrolytic cell containing copper sulphate solution by the passage of a current of 2 amperes for 30 minutes? (At. mass of Cu = 63.5)
- Q2. Calculate the electrode potential of the following electrode at 25° C Zn/Zn⁺² (conc. = 0.1M)
- Q3. Calculate the emf of the cell Zn| Zn^{+2} (0.1M)|| Cd^{+2} (0.1 M)| Cd at 298 K
- Q4. The specific conductivity of N/50 solution of KCI at 298 K is 0.002765 S/cm if the resistance of the same solution, placed in the cell is 2000 ohms, what is cell constant?
- Q5. Following cell Is set up between copper and silver electrodes $Cu_{(s)} |Cu^{+2}|| Ag^+| Ag_{(s)}$ If its two half cells work under standard conditions, calculate the e.m.f. of the cell
- Q6. Iron and nickel are used to make an electro chemical cell by using a salt bridge to join a halfcell containing 1.0 M solution of Fe⁺² _(aq) in a strip of iron has been immersed to a second halfcell which contains 1.0 M Ni⁺² _(aq) solution in which a ship of nickel has been immersed. A voltmeter is connected between the two metal strips.
 - a) In which cell does reduction occur?
 - b) Write the half-cell reactions involved.
 - c) Which metal the anode?
 - d) In which direction are the electrons passing through the voltmeter?
 - e) What would be effect on the voltmeter reading if Fe^{+2} concentrations were increased?
 - f) What will be the voltmeter reading when the cell reaches equilibrium?
- Q7. If the molar conductivities at infinite dilution at 293 K for aqueous hydrochloric acid, sodium acetate and sodium chloride solution are 383.5, 78.4 and 102 Ω^{-1} cm² respectively, calculate the molar conductivity of acetic acid at this temperature and dilution. If the molar conductivity of acetic acid at some other dilution Is 100.0 S cm² at 293K, calculate the degree of ionization of acetic acid at the dilution.
- Q8. The half-cell reactions with their potentials are $Pb_{(s)} 2e^- \rightarrow Pb^{+2} E^\circ = +0.13 V$; $Ag_{(s)} e^- \rightarrow Ag^+ E^\circ = +0.80 V$ Write the cell reaction and calculate its e.m.f.
- Q9. In a particular cell, 0.01 M solution of potassium chloride gave a resistance of 150 ohms at 298 K. While 0.01 M solution of hydrochloric acid gave a resistance of 51.40 ohms at the same temperature. At 298 K the specific conductivity of 0.01 M potassium chloride solution is 0.0014088 ohm⁻¹ cm⁻¹ Calculate equivalent conductivity of the given hydrochloric acid solution.
- Q10. Two half cells are $Al^{+3}_{(aq)}/Al$ and $Mg^{+2}_{(aq)}/Mg$ The reduction potentials of these half cells are -1.66 V and -2.36 V respectively. Calculate the cell potential also write the cell reaction?
- Q11. Calculate the equilibrium constant for the reaction $Cu_{(s)} + 2Ag^+ Cu^{+2} + 2Ag_{(s)}$
- Q12. The molar conductivity of NH₄Cl at infinite dilution is 149.7 S cm² and the ionic conductivities of OH⁻¹ and Cl⁻¹ ions are 198 and 76.3 S cm² respectively. Calculate the molar conductivity of NH₄OH at this dilution.
- Q13. The conductivity of 0.001 M acetic acid is 4.95 x 10⁻⁵ S/cm Calculate its dissociation constant. Given for acetic acid, Λ^{α} is 390 Scm² mol⁻¹
- Q14. Calculate the equilibrium constant for the reaction at 298 K. 4 $Br^{-1} + O_2 + 4 H^+ \Rightarrow 2Br_2 + 2H_2O$
- Q15. For the cell $Zn_{(s)}|ZnSO_4||CuSO_4|Cu_{(s)}$ calculate standard cell potential

Refer to the standard electrode potential data page for electrode potentials

- Q16. The resistance of a deci normal solution of an electrolyte in a conductivity cell was found to be 245 ohms. Calculate the equivalent conductivity of the solution if the electrodes in the cell were 2cm apart and each has an area of 3 sq. cm?
- Q17. Calculate the EMF of the following cell at 298K: Cd Cd⁺² (0.1M) Ag⁺(0.1 M) Ag
- Q18. Predict whether zinc and silver react with 1M sulphuric acid to give out hydrogen gas or not.
- Q19. The molar conductance of NaOH, NaCl and BaCl₂ at infinite dilution are 2.481 x 10^{-2} , 1.265 x 10^{-2} and 2.800 x $10^{-2} \Omega^{-1}$ cm² mol⁻¹ respectively. Calculate Λ^{α} for Ba(OH)₂ [Ans. 5.232 x 10^{-2} Ω^{-1} cm² mol⁻¹]
- Q20. How much electricity In terms of Faraday is required to produce
 - a) 20.0 g of Ca from molten $CaCl_2$
 - b) $40.0 \text{ g Al from molten Al}_2O_3$
- Q21. If E° for copper electrode is + 0.34 V, how will you calculate its emf value when the solution in contact with it is 0.1 M in copper ions (Cu^{+2}) ? How does the emf for copper electrode change when concentration of Cu^{+2} ions in the solution is decreased?
- Q22. For the Cell Mg(s) $|Mg^{+2}||Ag^{+}|Ag$ (aq) Ag calculate the equilibrium constant of the cell reaction at 25°C and maximum work that can be obtained by operating the cell
- O23. Calculate the EMF of the cell
 - a) Containing Ni and Cu electrodes.
 - b) Containing Chromium and Cadmium electrodes.
 - c) Containing Zinc and Nickel electrodes
- Q24. Can a solution of 1 M ZnSO₄ made by stirring the solution with copper rod?
- Q25. Two electrolytic cells containing silver nitrate solution and copper sulphate solution are connected in series. A steady current of 2 ampere was passed through them till 1.078 g of Ag were deposited. How long did the current flow? What weight of copper will be deposited? (At. Mass of Ag = 107.8, Cu = 63.5) [Ans.= 6 min 26 sec, 0.3175 gm]
- Q26. Why blue colour of copper sulphate solution gets discharged when zinc rod is dipped in it?
- Q27. Predict reaction of 1N sulphuric acid with the following metals (i) Copper (ii) lead (iii) iron. Justify your answer
- Q28. For the equilibrium 2 H₂ + O₂ \Rightarrow 2 H₂O at 25° C Δ G° for the reaction is -474.78 kJ/ mol Calculate K for it
- Q29. Silver is electro-deposited on a metallic vessel of surface area 800 cm^2 by passing a current 0.2 ampere for 3 hours. Calculate the thickness of silver deposited. Given the density of silver as 10.78 gm/cc (Atomic mass of Ag = 107 amu)
- Q30. Calculate the maximum possible electrical work that can be obtained from the cell under the standard conditions at 25°C $Zn_{(s)} | Zn^{+2} | Ni^{+2} | Ni_{(s)}$
- Calculate the cell potential (E°_{cell}) for the cell containing 0.100 M Ag⁺ and 4.00M Cu⁺² ions Q31. in aqueous solution at25°C.
- Can a nickel spoon be used to stir a solution of silver nitrate? Support your answer with Q32. reason?
- Q33. Write the Nernst equation and e.m.f. of the following cells at 298 K

 - a) $Mg_{(s)} | Mg^{+2}(0.001 \text{ M}) || Cu^{+2} (0.0001 \text{ M}) ||Cu_{(s)}|$ b) $Fe_{(s)} | Fe^{+2}(0.001 \text{ M}) || H^{+} (0.1 \text{ M}) ||H_{2(g)} (1 \text{ bar})| Pt_{(s)}|$
 - $Sn_{(s)} | Sn^{+2} (0.005 \text{ M}) || H^+ (0.02 \text{ M}) ||H_{2(g)} (1 \text{ bar})| Pt_{(s)}$ c)
 - d) $P(s)|Br2_{(1)}|Br^{-1}(0.001 \text{ M})||H^{+}(0.03 \text{ M})|H_{2(g)}(0.5 \text{ bar})|Pt_{(s)}|$

- Q34. Write the Nernst equation and calculate the value of ΔG° for the Galvanic cell: Cu _(s) |Cu⁺² (0.130 M) || Ag⁺ (1 x 10⁻⁴ M) | Ag _(s)
- Q35. Calculate the potential of the following cell reaction at 298 $\text{Sn}^{+4}(1.50 \text{ M}) + \text{Zn}(\text{s}) \rightarrow \text{Zn}^{+2}$ (2.00 M) + Sn^{+2} (0.50 M) The standard potential (E°_{cell}) of the cell is 0.89 V. Whether the potential of the cell will increase or decrease, if the concentration of Sn^{+4} is increased in the cell?
- Q36. How much charge is required for the following reduction of
 - a) 1 mole of Al^{+3} to Al
 - b) 1 mole of Cu^{+2} to Cu
 - c) 1 mole of MnO_4^{-1} to Mn^{+2}
- Q37. Three electrolytic cells A, B, C containing solution of ZnSO₄, AgNO₃ and CuSO₄ respectively are connected in series. A steady current of 1.5 amperes was passed through them until 1.45 g of silver deposited at the

Refer to the standard electrode potential data page for electrode potentials

