
Test

Electrochemistry

- Q1 Which cell will measure standard electrode potential of copper electrode?
 - (i) Pt $_{(s)} \mid H_{2(g)}$ (0.1 bar) $\mid H_{(aq)}^+(1\ M) \parallel Cu_{(aq)}^{+2}(1\ M) \mid Cu_{(s)}$
 - (ii) Pt $_{(s)}\mid H_{2(g)}$ (1 bar) $\mid H_{(aq)}^{+}(1\ M)\parallel Cu_{(aq)}^{+2}(2\ M)\mid Cu_{(s)}$
 - (iii) Pt $_{(s)} \mid H_{2(g)}$ (1 bar) $\mid H_{(aq)}^{+}(1 \text{ M}) \mid \mid Cu_{(aq)}^{+2}(1 \text{ M}) \mid Cu_{(s)}$
 - (iv) Pt $_{(s)} \mid H_{2(g)}$ (1 bar) $\mid H_{(aq)}^{+}(0.1 \text{ M}) \parallel Cu_{(aq)}^{+2}(1 \text{ M}) \mid Cu_{(s)}$
- Q2 Electrode potential for Mg electrode varies according to the equation

$$E_{Mg^{+2}/Mg} = E_{Mg^{+2}/Mg}^{O} - \frac{0.0591}{2} log \frac{1}{[Mg^{+2}]}$$
 The graph of

 $E_{Mg^{+2}/Mg} \ vs \ log \ [Mg^{+2}]$

- Q3 Which of the following statement is not correct about an inert electrode in a cell?
 - i) It does not participate in the cell reaction.
 - ii) It provides surface either for oxidation or for reduction reaction.
 - iii) It provides surface for conduction of electrons.
 - iv) It provides surface for redox reaction.
- Q4 Match the terms given in Column I with the items given in Column II.

Column	I

Column II

(i) $\Lambda_{\rm M}$

(a) intensive property

(ii) E_{cell}

(b) Depends on number of ions / volume

(iii) k

(c) extensive property

(iv) $\Delta_{\rm r}G_{\rm Cell}^{\rm O}$

(d) increases with dilution

Note: In the following questions a statement of assertion followed by a statement of reason is given. Choose the correct answer out of the following choices.

- a) Both assertion and reason are correct statements, and reason is the correct explanation of the assertion.
- b) Both assertion and reason are correct statements, but reason is not the correct explanation of the assertion.

- c) Assertion is correct, but reason is wrong statement.
- d) Assertion is wrong but reason is correct statement.
- e) Both assertion and reason are wrong statements
- O5 Assertion:

Conductivity of all electrolytes decreases on dilution.

Reason:

On dilution number of ions per unit volume decreases.

O6 Assertion:

 $\Lambda_{\rm M}$ for weak electrolytes shows a sharp increase when the electrolytic solution is diluted.

Reason:

For weak electrolytes degree of dissociation increases with dilution of solution.

- Q7 What would happen if the protective tin coating over an iron bucket is broken from some places?
- Write the electrode reactions for hydrogen electrodes and its potential & Write the symbolic notation for standard electrodes and its potential?
- Why does electrolysis of aqueous solution of NaBr smd Nal give Br₂ and 1₂ respectively whereas that of NaF gives O₂ instead of F₂?
- Q10 Give units of specific conductance and molar conductance?
- Q11 For what concentration of $Ag^+_{(aq)}$ will the EMF of the given cell be zero at 25 °C. If the conc. of $Cu^{+2}_{(aq)}$ is 0.1 M?

 $Cu_{(s)} \mid Cu^{+2} (0.1M) \parallel Ag + {}_{(aq)} \mid Ag_{(s)} \ Given \ E^{\circ}{}_{Ag} + {}_{/Ag} = +0.80V, \ E^{\circ}{}_{Cu} + {}^{2}{}_{/Cu} = 0.34V$

- Q12 Calculate E_{cell} for the cell Al $_{(s)}$ |Al $^{+3}$ (0.1 M) || Fe^{+2} (0.02 M) | $Fe_{(S)}$ Given $E^{\circ}_{Al}^{+3}_{/Al} = -1.66V$, $E^{\circ}_{Fe}^{+2}_{/Fe} = -0.44V$
- Q13 How many grams of chlorine can be produced by electrolysis of molten NaCl with a current of 1.0 Amp for 15 minutes?
- Q14 State Kohlrausch's law of independent migration of ions. How does this help in determining the molar conductivity of H₂CO₃ at infinite dilution?
- Q15 The molar conductance of NaOH, NaCl and BaCl₂ at infinite dilution is 2.481 x 10^{-2} , 1.265×10^{-2} and $2.800 \times 10^{-2} \Omega^{-1}$ cm² mol⁻¹ respectively. Calculate Λ^{α} for Ba(OH)₂?
- Q16 Silver is electro-deposited on a metallic vessel of surface area 800 cm² by passing a current 0.2 ampere for 3 hours. Calculate the thickness of silver deposited. Given the density of silver as 10.78 gm/cc (Atomic mass of Ag = 107 amu)
- Q17 Two half cells are $Al^{+3}_{(aq)}/Al$ and $Mg^{+2}_{(aq)}/Mg$ The reduction potentials of these half cells are -1.66 V and -2.36 V respectively. Calculate the cell potential also write the cell reaction?
- Q18 What is corrosion? Briefly explain methods of prevention of corrosion?

